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Abstract: The health status of women and children is considered as a reflection of the present society and predictor for 

the future generations. Unfortunately, challenges due to poverty, inadequate resources, illiteracy and socio-cultural 

barriers contribute to poor health and high maternal and newborn mortality in the developing countries. To address some 

of these challenges, there are several mHealth initiatives seeking to exploit opportunities provided by over 90% mobile 

penetration. However, most of these interventions have failed to justify their value proposition to inspire acceptance and 

use. It is our contention that the observed low up-take of mHealth innovations require holistic approach to align the 

solutions to consumer needs and expectations. In this paper, we demonstrate how to apply structural equation modelling 

to predict acceptance and use of mHealth interventions in low-resource settings. To identify factors that influence 

acceptance and use of mobile-based solutions, ninety five randomly selected antenatal and postnatal women were invited 

to participate in formal discussions on how mobile phones can be used to enhance access to maternal and newborn care. 

Seventy nine participants filled out self-assessment questionnaire as a prestudy to evaluate how their reaction would 

predict post-implementation reactions formed on the basis of significant hands-on experience. Based on the discussions 

and the results of the pre-study, we identified key factors that influence acceptance and use of mHealth interventions in 

low-resource settings. These factors were configured into a conceptual model comprising of nine variables used to predict 

post-deployment acceptance (fit) and use of mHealth prototype named Mamacare. After deploying mamacare in a rural 

hospital, a cohort of seventy nine subjects were recruited into a longitudinal experiment that involved sending of targeted 

SMS alerts on appointment reminders, safe delivery, danger signs, nutrition, preventive care, and adherence to 

medication. The experiment was designed to allow a within-subjects comparison in order to examine how structural 

equation modelling can be used to predict likelihood of acceptance and use of Mamacare based on reactions taken during 

the prestudy. After analyzing the prestudy dataset using SmartPLS, the results predicted 80.2% acceptance and 63.9% 

likelihood of use. However, results obtained from the first post-deployment user experience revealed lower rates of 

Mamacare acceptance and use at 69.1% and 50.5% respectively. The difference between prediction and actual outcome 

necessitated improvement of Mamacare using reactions obtained from the first post-test evaluation. Three months later, 

we conducted a follow-up post-test that recorded further drop in the acceptance from 69.1% to 60.3% but improved usage 

from 50.5% to 53.7%. Despite this variations, the study demonstrated that structural equation modelling is crucial to 

predicting acceptance and use of mHealth interventions in the early design stage. 
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1. INTRODUCTION  

To exploit vast opportunities provided by mobile penetration [1] in developing countries, there are 

several mHealth initiatives most of which are pilot projects in Sub-Sahara Africa and South Asia. 

However, due to fragmentation and mismatch to consumer needs, most of these initiatives have failed 

to address real healthcare challenges in low-income countries [2-5]. In fact, a global observatory 

survey conducted by WHO and International Telecommunication Union (ITU) in 64 developing 

countries revealed that only 9-16% of the countries have managed to implement eHealth systems 

without relying on donor funding [6]. We argue that, the poor uptake of mHealth is due to poor design 

strategies that are based on perceived problems rather than the reality in the intended context of use.  

In order to accelerate seamless integration of mHealth into healthcare system, there is need 

for structured approach to predict acceptance (fit) and use of mHealth interventions at the design 

stage [7-8]. This study demonstrates how to apply structural equation modelling (SEM) to predict 

acceptance and use of mHealth solutions during the early design stage. Furthermore, the proposed 

approach is anchored on socio-technical dimensions of people, process, and technology that influence 

adoption of new technologies in the healthcare ecosystem. To identify key factors that influence 

acceptance and use of mHealth artefacts, we used focus group discussions (FDGs) in which selected 

patients, healthcare providers, software developers, and policy makers were involved. Feedback from 

these stakeholders together with meta-analysis of behaviour science and technology adoption theories 

formed the basis for the proposed theoretical model unveiled in the next section.  

 

2. THEORETICAL FOUNDATION  

To solve problems using information and communication technology (ICT) solutions, Hevner 

et al. [9] proposed a framework that integrates behavioural theories into design science. The 

framework is instrumental in development of ICT solutions that satisfies people’s needs and 

expectations [10]. In addition to Hevner’s framework, we reviewed several behaviour science and 

technology adoption models that are relevant to this study. These include Technology Acceptance 

Model (TAM) [11], Process Virtualization Theory and Impact of Information Technology (PVT-IT) 

[12], Task-Technology Fit (TTF) [13], and Theory of Planned Behaviour (TPB) [14]. Based on 

empirical findings from these models, we derived a theoretical model named TIPFit. The word 

TIPFit is an acronym derived from Technology, Individual, Process and Fit as shown in Figure 1. 

The three main components are further decomposed into variables used to predict acceptance and use 

of mHealth artefacts in maternal and newborn healthcare (MNH). 
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2.1 Description of TIPFit Model 

TIPFit model consolidates best practices in the field of design science in order to align 

technology to people and clinical processes. In the following section, we justify the configuration of 

TIPFit model that comprises of nine predictor variables posited to influence fit and utilization of 

mHealth solutions in low-resource settings:  

 Attitude: This variable derived from TPB model is suitable for investigating one’s judgment on 

certain behaviour, subject or action [14-16]. Inclusion of Attitude in the model was informed by 

a pre-study feedback that revealed attitude is key to acceptance of new technology innovations. 

Positive attitude may be influenced by perceived benefits while negative attitude may be due to 

unfavourable condition. We therefore argue that attitude is crucial in measuring intended users’ 

perception before and after exposure to technology interventions. 

 Self-Efficacy: Self-efficacy is derived from TAM and CSE models [11,17]. The construct is 

intended to measure individual’s ability to use devices such as computers and mobile phones to 

access maternal care services and information. In this study, we employed design thinking to 

identify factors that influence usability of mHealth artefacts. In particular, we investigated one’s 

ability to use a mobile phone to access maternal care services in low-resource settings. 

 Sensory requirements: Sensory requirements derived from PVT-IT [12, 18, and 19] refers to the 

sense of touch, smell, sight, taste, and aural that may be important in clinical processes such as 

diagnosis. For example, during routine maternal care visits, clinicians use medical devices to 

physically capture clinical tests such as temperature, blood pressure, blood sugar, urinalysis, and 

 

Figure 1: TIPFit model consisting of variables posited to influence acceptance (fit) and use of 

mHealth intervention. 
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haemoglobin. Although some of these vitals may be captured remotely using biosensors, it may 

be difficult to deploy such technologies in low-resource settings [20]. This is why sensory 

requirements is critical in determining the degree to which low-cost mobile phones and point-of-

care devices may be used to fulfil sensory requirements in clinical processes.        

 Relationship: Relationship is derived from PVT-IT [12,18-20] to investigate degree of interaction 

between the caregivers and patients in a virtual environment. In clinical processes, relationship 

is important because it builds mutual trust between patients and healthcare providers. In a 

physical encounter, verbal and non-verbal communications convey vital information resulting to 

mutual trust and better inter-personal relationship. 

 Identification and privacy: Identification refers to proof of one’s identity while privacy refers to 

confidentiality of health information. This construct was derived from PVT-IT models [12, 18-

20]. In clinical processes, fulfilling these requirements is essential if patients and caregivers are 

to share sensitive health information. For example, a HIV positive client may be unwilling to 

receive SMS alerts on adherence to antiretroviral (ARV) regimen.  On the other hand, clinicians 

may be reluctant to perform diagnosis and prescription electronically to avoid compromising 

patient’s privacy.  

 Synchronism: In this context, synchronism is the degree to which activities that make up a clinical 

process need to occur with minimal delay [12, 18-20]. Synchronism is crucial in cases like 

preeclampsia that require urgent attention. In normal practice, these complications are mostly 

identified when a patient goes to hospital for routine check-up. These delays contribute to 

maternal and newborn deaths which could have been avoided if mechanisms for early detection 

are established. Synchronism was used to investigate the degree to which an intervention would 

reduce delays in seeking maternal services and information through use of mobile phones and 

point-of-care devices.  

 Representation: Representation derived from PVT-IT [12, 18-20] refers to the capability of 

information technology to replicate a physical process or object. Due to complexity of clinical 

processes, we argue that difficulty of replicating processes such as treatment may be one of the 

reasons for low uptake of mHealth interventions. Using TIPFit model, we investigated degree to 

which representation could be realized using cost-effective mobile telemedicine products.  

 Reach: This construct was adapted from PVT-IT [12,18-20] to measure capability of technology 

to provide sufficient access to maternal and newborn care services at reduced cost, time and 

distance of travel. Reviewed case studies indicate that most mHealth interventions fail to provide 

sufficient access to care services due to limited resources and infrastructure [18]. In this study, 

we used TIPFit model to investigate how mobile phones and low-cost medical devices could 

provide sufficient reach by reducing time and cost of accessing maternal care and information in 

low-resource settings. 
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 Monitoring: Monitoring was adapted from PVT-IT [12, 18] to measure capability of technology 

to effectively and efficiently monitor maternal and newborn’s health condition. During antenatal 

and postnatal care, mothers are required to make regular visits to hospital for constant monitoring. 

However, some women fail to honour such visits resulting in complications such as hemorrhage 

due to hyperglycaemia. This study used TIPFit to investigate how portable point-of-care devices 

and mobile phones could be used to provide sufficient monitoring of maternal and newborn health 

status. 

 Fit: Refers to acceptance or perception on suitability of mHealth intervention in fulfilling client’s 

needs and expectations [18, 21]. Fit is an intervening variable implying that the higher the 

perceived fit, higher will be the likelihood of utilizing mHealth intervention.   

 mHealth Utilization: In this context, utilization refers to making practical and worthwhile use of 

mHealth products and services. This variable is used to predict adoption and sustainable use of 

mHealth solutions during the design phase [22]. 

 

3. RESEARCH METHODS 

3.1. Mamacare Prototype Development Process  

To demonstrate practical utility of TIPFit model, we operationalized it into blueprints for the 

design and implementation of mHealth prototypes. The blueprints were used in a user-centred design 

to conceptualize, design, build, and deploy a maternal care prototype known as Mamacare. The word 

Mamacare is derived from two words, i.e., mama that stands for “mother” and care which in this 

context stands for maternal and newborn healthcare. Table 1 shows how the model constructs were 

mapped onto workflows that guided development of Mamacare prototype. 

 

 

 

Concept Conceptualize* Design Build Deploy 

Attitude  Use strategies e.g. 

creative thinking and 

field surveys to formulate 

solution to the problem. 

Test user’s attitude to  

predict acceptance and 

use  

mHealth physical 

designs should be 

based on explicit 

understanding of 

target through 

participatory design 

approaches  

Involve 

stakeholders where 

possible during 

implementation. 

This may be  

achieved through 

piloting and release 

of beta versions  

During deployment, 

conduct training and 

support. Also 

administer user 

acceptance tests to 

evaluate utilization 

and user satisfaction.   

 Self-

Efficacy  

Investigate individual’s 

ability and competences 

in using computers and 

mobile devices. Pretest 

self-efficacy  to  predict 

utilization 

Responsive design to 

enhance user 

experience. Use 

mock-ups to get  

optimal content and 

navigation 

presentation 

Use rapid 

development 

toolkits to 

implement 

mHealth artefacts 

that are responsive 

to user and device 

profiles.  

Evaluate user’s 

feedback on 

perceived ease of use. 

Feedback used to 

enhance user 

interface and content 

representation 

Table 1:  Extract of blueprint derived from TIPFit model used in development of Mamacare 
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To improve access to maternal care services, Mamacare sends text alerts on clinic 

appointment, danger signs, safe delivery, nutrition, preventive care, and adherence to medication 

using SMS protocol as shown in Figure 2. On the web portal, the system receives data on vital signs 

such as blood pressure, temperature, haemoglobin and blood sugar captured using low-cost point of 

care devices. For ease of processing antenatal, delivery, and postnatal health records, a workstation 

installed in the hospital has a secured web portal that is only accessible to caregivers depending on 

assigned roles and privileges.  

 

 

 

 

 

 

  

 

 

 

 

To enhance user experience, Mamacare web portal was implemented using responsive design 

to dynamically adapt to multiple device profiles depending on the viewport and processing power of 

the execution environment. Figure 3 shows how the same page used to manage maternal client’s 

records appear on a desktop computer and low-end mobile phone.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Web server 

Database server 

Workstation Mobile phone 

Logs 

  Web portal  SMS Interface 

MySQL 
DB Interface 

Presentation 
layer 

Caregiver Patient 

Figure 2: Mamacare conceptual design. Client-side consists of mobile web interface for 

caregivers and SMS interface for the patients.  

 

Figure 3: Mamacare web portal on computer and mobile phone interface on the right. The portal 

dynamically adjusts to fit onto any portable device viewport. 
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3.2 Hypotheses for Predicting Acceptance and Use 

In predictive modelling, a linear regression or neural network models may be used to predict 

future outcome based on input from past and current events. In this study, we operationalized TIPFit 

constructs into a set of hypotheses that were tested using the following structural equation model:   

Yj = βiXi + Ɛi    (where i = 1…..9; and j=1,2) 

In the equation, Xi represents predictor variables on TIPFit model that are hypothesized to 

influence “fit and utilization outcomes” represented using Yj. The term βi represents path coefficients 

used to determine the effect of each predictor variable on fit. The error term in the equation, i.e., Ɛi 

represents random variation from unexplained factors that influence fit and utilization of mHealth 

artefacts. Table 2 shows the set of hypotheses used to determine the effect of the nine predictor 

variable on fit. The path coefficient represented by P10 is used to measure the effect of fit (Y1) on 

mHealth utilization (Y2). 

 

Path Hypothesis 

P1 Attitude towards technology has no significant effect on fit of mHealth intervention 

P2 Self-efficacy on using mobile devices or computers has no significant effect on fit of mHealth intervention 

P3 Sensory requirements of touch, sight and aural experience have no significant effect on fit of mHealth 

intervention. 

P4 Relationship requirement between patient and caregiver has no significant effect on fit of mHealth 

intervention 

P5 Identity and privacy requirement between patient and caregiver has no significant effect on fit of mHealth 

intervention 

P6 Synchronism requirement of time-constrained processes has no significant effect on fit of mHealth 

intervention 

P7 Representation capability of mHealth artefact has no significant effect on fit  

P8 Reach capability of mHealth artefact has no significant effect on fit 

P9 Monitoring capability of mHealth artefact has no significant effect on perceived fit  

P10 Fit has no significant effect on utilization of mHealth artefact in low-resource settings 

 

 3.3 Repeated Measures Experiment 

For a period of six months, we conducted repeated measures experiment in which data was 

collected using indicators derived from each construct of TIPFit model. For each indicator, a set of 

at least three likert-type questions on a scale of 1-5 were used. During the first month after recruiting 

the subjects, the pretest questionnaire was used to predict Fit and utilization of mHealth in MNH. 

Figure 4 shows the research design from prediction phase to post-tests (confirmatory phase) after 

subjecting the study cohort to the experimental treatment.    

 

 

Table 2:  Hypothesized relationships between variables TIPFit model variables 
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The first post-test was conducted three months after exposing the subjects to the treatment. 

Later, another post-test was conducted after six months into the experiment using the same tools 

employed in the first post-test. The reason behind the time lag between the tests was to minimize 

crossover effect that is common in within-subjects experimental designs. 

 3.4 Sampling and Inclusion Criteria 

To get a representative sample, we used stratified random sampling based on education level, 

gravidae, age, residence, ethnicity, and ownership of a mobile phone. The sample frame comprised 

of 226 women registered for antenatal and postnatal in rural hospital located 110km from Nairobi. 

Using Cohen [24] recommendations, we used the following formula to obtain the optimal sample 

size: 

 

 

However, due to limitations imposed by the inclusion criteria, ninety five participants were 

invited through SMS and voice calls, but seventy five of them agreed to participate in the six-month 

experiment. 

4. RESULTS FROM STRUCTURAL MODEL AND DISCUSSION   

 4.1 Characteristics of the Study Cohort  

Demographic attributes such as gender, age and education level may be used to determine 

individual’s belief, attitude and ability to perform tasks using technology [25].  For this reason, we 

first analysed the age and education levels of the study cohort. Figure 5 shows demographic details 

obtained from 73 valid responses obtained from the cohort of 79 subjects. The chart on the left 

indicates that 64% of the subjects were women aged between 15 and 25 years while that on the right 

shows distribution of their education levels.  

 

1.962 x 0.02 x 0.98 x 226 

0.022 (226 – 1) + 1.962 x 0.02 x 0.98 

   n =  = 102 

Fig. 4. Experiment to predict acceptance and use of mHealth interventions in low-resource 

settings.  

 

    Prediction phase         Confirmatory phase 

 

Pretest Post-test1 Post-test2 
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 4.2 Reliability and Validity Tests 

To test reliability of the model, we used composite reliability and Cronbach’s alpha tests 

available  in SmartPLS [26]. Figure 6 shows a chart generated from the pretest dataset with all the 

model constructs scoring above 0.70. Similarly, reliability test from the two post-test datasets 

demonstrated high internal consistency. Further, we tested the pretest and post-test models for 

convergent, and discriminant validity using Average Variance Extracted (AVE). For each of the 

models, all the constructs scored values above 0.50, i.e., 50% hence, demonstrating good convergent 

and discriminant validity [27].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Structural Modelling of Pretest and Post-test Models 

Once the pretest and two post-test datasets passed the reliability and validity tests, we 

Figure 5: Demographic details of 73 valid responses from 79 subjects who participated in the 

pre-study at Kimbimbi Sub-County Hospital in Kenya.  

 

Figure 6: Reliability test of the pretest model. The constructs scored above 0.7 threshold 
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proceeded to the next step of creating the graphical models using the design tools available in 

SmartPLS. In this section, we provide the results of analyzing the graphical models obtained from 

the three datasets. 

 

4.3.1 Path Analysis of Pretest Dataset 

To predict acceptance and use of Mamacare in the low-resource settings, we used SmartPLS 

to generate the graphical model shown in Figure 7 from the pre-test dataset. The measurement model 

shows the factor loadings generated from manifest variables (boxes labelled Q2.1 to Q12.2); while 

the structural model depicts the path weights and coefficient of determination (R2) for fit and mHealth 

utilization. The R2 of 0.802 and 0.639 generated from the pretest dataset indicates that TIPFit has 

high predictive power of 80.2% on fit and 63.9% probability of use.  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2 Path Analysis of Post-tests Datasets 

The same approach was used to generate graphical models from the two post-test datasets 

collected after subjecting the study cohort to mamacare intervention. Results from the first post-test 

registered R2 of 69.1% on fit and 50.5% rate of actual use. These low scores necessitated 

improvement of Mamacare based on feedback obtained from caregivers and the study cohort during 

the first post-test evaluation. It is after these improvements on features and functionalities of 

Mamacare that we conducted the second post-test. The results revealed there was marginal decline 

in fit at R2 of 60.3% but improved use from 50.5 to 53.7%. Overall, Table 3 gives a summary of the 

path weights generated from the three datasets.  

 

 

Figure 7: Computed model generated from pretest dataset to predict acceptance and utilization 

of mHealth amacare 
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Table 3.  Path weights generated from pretest and post-test datasets using SmartPLS  
  Attit Self Sense Relat Priv Sync Rep Reach Mon Fit. 

Pretest 0.19 -0.11 -0.08 0.54 0.07 0.17 0.12 -0.03 0.38 0.79 

Post1 0.21 -0.06 -0.15 0.08 0.20 0.13 0.31 0.24 0.02 0.71 

Post2 0.22 0.01 -0.18 -0.04 0.19 -0.02 0.15 0.29 0.26 0.73 

 

4.3.3 Consolidated Pretest and Post-test Models 

Further, we collapsed the model into its abstract view to measure the overall effect of the 

main constructs namely individual characteristics, process requirements, and technology 

functionality on fit. Figure 8 shows consolidated pretest model with factor loading from each 

predictor variable, path weights, and R2 of 66.9% on fit and 60.7% rate of Mamacare use.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To determine significance of path coefficient for each of the three main constructs, we used 

bootstrapping algorithm in SmartPLS. Table 4 shows that the pretest predicted that the process 

requirements construct has the strongest effect on fit.  

 

Main construct Path β t-value Effect-f2 p-value Remarks 

Individual Characteristics 0.135 2.053 0.024 0.0439 Small significant effect 

Process Requirements 0.463 3.007 0.233  < 0.001 Large  significant effect 

Technology Functionality 0.285 2.695 0.073    0.008 Small significant effect 

Fit ->Tech. utilization 0.779 20.297   < 0.001 Large significant effect 
 

To compare the predictive power of the main constructs, we consolidated the two post-test 

datasets to generate the composite model shown in Figure 9. The post-intervention model returned 

R2 of 60% on fit compared to 66.9% of the pretest model. However, the consolidated pretest and 

Table 4:  Summary of path weights, t-statistic, Effect size and p-value of the prediction model 

 

Figure 8: Modeling main constructs used to predict fit and utilization before deployment of 

Mamacare 
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post-test graphical models shows that there was a huge disparity between predicted use of 60.7% and 

the actual use of 47.6%. This outcome necessitated use of alternative techniques discussed in the next 

section in order to draw reliable conclusions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 gives a summary of the path weights, t, f2 and p values after subjecting the model to 

bootstrapping algorithm. Contrary to the pretest findings, the post-test model shows that technology 

functionality has the strongest effect on fit. 

 
Main Construct Path β t-value Effect-f 2 p-value Significance 

Individual Characteristics 0.153 2.828 0.025 0.006 Small significant effect 

Process Requirements 0.161 2.776 0.020 0.007 Small significant effect  

Technology Functionality 0.523 10.041 0.236 < 0.001 large  significant effect 

Fit ->Tech. utilization 0.690 16.396  < 0.001 Large significant effect 

 

To determine the impact of Mamacare intervention, we compared the pretest and post-test 

models. In this section, we used the results from the graphical models and parametric tests to draw 

reliable inference on the set of hypotheses stated earlier in Table 2.      

  

4.4 Significance of Structural Model Path Weights  

To test significance of the path weights, we used bootstrapping algorithm in SmartPLS to 

determine significance of path coefficients using Student’s t test at 5% significance level. Table 6 

gives a summary of t values obtained after bootstrapping the path weights from the pretest and the 

two post-test models.  

Figure 9: Composite post-test model used to evaluate fit and actual use of Mamacare prototype 

 

Table 5:  Summary of path weights, t-statistic, Effect size and p-value of composite post-

intervention model 
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Table 6.  Significance of pretest and post-tests path coefficients  
 Attit Self Sense Relat Priv Sync Rep Reach Mon Fit 

Pretest 2.38 -1.71 -1.79 5.07 0.75 2.28 1.43 -0.37 2.73 20.48 

Post1 2.96 -0.83 -3.53 1.09 3.40 1.30 3.91 5.09 0.30 19.52 

Post2 3.16 0.08 -3.65 -0.59 2.14 -0.25 1.94 3.64 3.86 20.39 
 

The results from the table shows that attitude towards fit was significantly positive before, 

and after intervention. Although effect on Self-Efficacy was insignificant before and after 

intervention, there was improvement after subjecting the cohort to Mamacare Intervention. 

Nevertheless, effect of Fit on mHealth utilization was highly significant before and after intervention. 

In terms of process requirements, effect of sensory as predictor of fit was consistently negative before 

and after intervention. However, inspection on the path weights from the three datasets shows some 

inconsistences in synchronisms, representation, and monitoring.  To investigate the overall effect of 

the three main constructs, we compared path coefficients, t, p and effect size of the composite pre-

test and post-test models as shown in Table 7. 

 

 

 Main Construct Pretest model Post-test model 

Path β t p Effect 

size f2 
Path β  t p Effect 

size f2  

Individual 

Characteristics 

0.135 2.053 0.0439 0.024 0.153 2.828 0.006 0.025 

Process Requirements 0.463 4.736 < 0.001 0.233 0.161 2.776 0.007 0.020 

Technology 

Functionality 

0.285 2.695 0.008 0.073 0.523 10.041 < 0.001 0.236 

Fit ->Tech. utilization 0.779 20.297 < 0.001  0.690 16.396 < 0.001  

The table shows that before exposure to Mamacare intervention, the model predicted that 

process requirements construct has the highest effect on perceived fit. However, after exposing the 

subjects to Mamacare intervention, the dimension on technology functionality recorded the highest 

effect on fit while individual characteristics remained relatively constant. Inference on hypothesized 

relationship between fit and mHealth utilization revealed that fit of mHealth intervention was positive 

and highly significant before and after Mamacare intervention. However, due to notable 

inconsistences in some predictor variables hypothesized to influence fit, we subjected the three 

datasets to parametric tests using SPSS discussed in the next section.  

4.5 Parametric Analysis using Repeated Measures ANOVA  

Due to inconsistencies observed in the structural models, we found it necessary to subject the 

datasets to parametric tests that draw inference from variance (2) and population mean () [27]. 

However, before we subjected the three datasets to parametric tests, we tested each for outliers, 

sphericity and normal distribution. Although the tests showed that the sample means were normally 

distributed, there were minor violations of sphericity. To correct these violations, we used 

Greenhouse-Geisser (GG) algorithm in order to use Repeated Measures ANOVA (RM-ANOVA). 

Table 7:  Comparison between the pretest and post-test path weights, t-statistic, Effect size and p-

values 
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Table 8 shows the results of sphericity (2 and p), RM-ANOVA (F and p), and Effect size (Eta2). 

Table 8.  Test of overall treatment effect using Repeated Measures ANOVA  
 Sphericity ANOVA:  Effect  Remarks 

Predictor Variable  2 p F  p Partial Eta2 Greenhouse-Geisser 

Correction (GGC)   

Attitude 0.534 0.766 2.595 0.078 0.036 Not significant 

Self-Efficacy 3.432 0.180 3.258 0.041 0.045 Significant 

Sensory requirements 5.109 0.078 1.233 0.295 0.018 Not significant 

Relationship 22.076 <0.001 4.038 0.029 0.055 GGC used: significant 

Identification and 

Privacy 

9.980 0.007 7.462 0.001 0.098 GGC used: significant 

Synchronism  13.683 0.001 8.022 0.001 0.104 GGC used: significant 

Representation 10.664 0.005 2.373 0.105 0.033 GG: Not significant 

Reach 5.034 0.081 1.117 0.330 0.016 Not significant 

Monitoring  20.082 <0.001 13.384 <0.001 0.162 GGC used: significant 

Fit  8.516 0.014 10.144 <0.001 0.128 GGC used: significant 

mHealth Utilization 1.350 0.509 4.152 0.018 0.057 Significant 

Inspection on p and F values from the table revealed that the experimental treatment had 

significant effect (p<0.05) on seven out of the eleven TIPFit constructs. These are self-efficacy, 

relationship, identification and privacy, synchronism, monitoring, Fit and mHealth utilization. 

Further analysis of the three datasets using Bonferroni pairwise comparisons between the pretest and 

the two post-tests is provided in Table 9. The results are tabulated in terms of sample mean (x̄ =µ), 

Standard Error (SE) and p values calculated from differences between sample means of the pretest 

(T0), post-test1 (T1) and post-test2 (T2) datasets. 

Table 9.  Comparison between means using Bonferroni post-hoc test  
Predictor Variable Pretest Post-test1 Post-test2 Mean differences 

x̄ =µ SE x̄=µ SE x̄=µ SE T0 - T1 T1-T2 T0 –T2 

Attitude 1.56 0.06 1.39 0.06 1.54 0.06 0.11 0.17 0.99 

Efficacy 1.55 0.07 1.35 0.06 1.55 0.06 0.10 0.04* 1.00 

Sensory 2.23 0.12 1.98 0.12 2.11 0.08 0.05* 0.21 0.39 

Relation 1.81 0.09 1.53 0.06 1.66 0.06 0.11 0.17 0.99 

ID & Privacy 1.89 0.09 1.51 0.07 1.58 0.06 0.01* 0.86 0.01* 

Sync 1.84 0.10 1.43 0.07 1.61 0.06 0.00* 0.09 0.09 

Represent 1.63 0.07 1.47 0.06 1.52 0.05 0.11 0.83 0.48 

Reach 1.74 0.07 1.59 0.08 1.65 0.06 0.47 0.93 0.64 

Monitor 1.66 0.08 2.00 0.00 1.60 0.06 0.00* 0.00* 0.92 

Fit 1.77 0.09 1.36 0.06 1.54 0.06 0.00* 0.06 0.06 

Use 1.69 0.08 1.43 0.07 1.51 0.06 0.02* 0.74 0.18 

The table shows there are significant differences between the pretest and first post-test (T0-

T1) in six TIPFit constructs. Between the first and second post-test (T1-T2), there were significant 

differences in two variables, i.e., Self-Efficacy and mHealth Utilization. Surprisingly, comparison 

between the pretest and second post-test (T0-T2) shows the only significant difference was in 

identification and privacy construct. This may be interpreted to mean that after improvement of 

Mamacare, it was possible to satisfy needs and expectations expressed during the pretest evaluation. 

This confirms Davis and Venkatesh [28] assertion that evaluating user’s behaviour and expectations 

during the early design stages of a new software system could provide valuable insights into its post-

implementation acceptance and use. 
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5. CONCLUSION 

In this study, we proposed a new approach to predicting acceptance and use of mHealth 

interventions using structural equation modelling. The pre-study fieldworks and review of related 

work gave us insight on factors that influence acceptance (fit) and use of mHealth interventions in 

low-resource settings. These factors were configured into a theoretical model used to predict 

acceptance and use of mHealth prototype named Mamacare deployed in a rural hospital. During the 

early design of Mamacare prototype, we conducted a pretest that predicted 80.2% fit and 63.9% 

likelihood of use. After recruiting 79 subjects for Mamacare intervention, the first post-test revealed 

fit of 69.1% and 50.5% actual use. However, the second post-test registered a marginal drop in fit 

from 69.1% to 60.6% but improved use from 50.5% to 53.7%. Despite some inconsistencies in 

predicting fit, findings from this study demonstrated that individual characteristics, process 

requirements, and technology factors have significant effect on fit (acceptance) and use of mHealth 

interventions in low-resource settings. Undoubtedly, success of mHealth in developing countries 

depends on how value is driven by aligning mHealth solutions to people and clinical processes in the 

early design phase. 
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